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Abstract

We show that, in a perfect and efficient securities market, an asset pricing model

that better describes investors’ behavior should predict stock index returns better

than other models. We propose a dividend model that predicts, out-of-sample, 31.3

percent of the variation in annual dividend growth rates between 1976 and 2013. We

demonstrate that, when learning about dividend dynamics is incorporated into a

long run risks model, the model predicts, out-of-sample, 22.3 percent of the variation

in annual stock index returns during the same time frame. This supports the view

that both investors’ aversion to long run risks in dividends and learning about these

risks play critical roles in determining asset prices and expected returns.

∗We thank Jonathan Berk, Jules van Binsbergen, Wayne Ferson, Lawrence Harris, Gerard Hoberg,
Narayan Naik, and seminar participants at London Business School and University of Sourthern Califor-
nia, for helpful comments and suggestions.



The average return on equities has been substantially higher than the average return

on risk free bonds over long periods of time. Between 1946 and 2013, the S&P500 earned

62 basis points per month more than 30 days T-bills (i.e. over 7% annualized). Over

the years, many dynamic equilibrium asset pricing models have been proposed in the

literature to understand the nature of risks in equities that require such a large premium

and why the risk free rate is so low. A common feature in most of these models is that the

risk premium on equities does not remain constant over time, but varies in a systematic

and stochastic manner. A large number of academic studies have found support for such

predictable variation in the equity premium.1 This led Lettau and Ludvigson (2001) to

conclude ”it is now widely accepted that excess returns are predictable by variables such

as price-to-dividend ratios.”

Goyal and Welch (2008) argue that variables such as price-to-dividend ratios, although

successful in predicting stock index returns in-sample, fail to predict returns out-of-sample.

The difference between in-sample and out-of-sample prediction is the assumption made on

investors’ information set. Traditional dynamic equilibrium asset pricing models assume

that, while investors’ beliefs about investment opportunities and economic conditions

change over time and drive the variation in stock index prices and expected returns,

they have full knowledge of the parameters describing the economy. For example, these

models assume that investors know the true model and model parameters governing

consumption and dividend dynamics. However, as Hansen (2007) argues, ”this assumption

has been only a matter of analytical convenience” and is unrealistic in that it requires

us to ”burden the investors with some of the specification problems that challenge the

econometrician”. Motivated by this insight, a recent but growing literature has focused

on the role of learning in asset pricing models. Timmermann (1993) and Lewellen and

Shanken (2002) demonstrate, via simulations, that parameter uncertainty can lead to

excess predictability and volatility in stock returns. Johannes, Lochstoer, and Mou (2015)

propose a Markov-switching model for consumption dynamics and shows that learning

about the consumption process is reflected in asset prices and returns. Croce, Lettau,

and Ludvigson (2014) show that a bounded rationality limited information long-run risks

model can generate a downward-sloping equity term structure. Johannes, Lochstoer, and

1See, among others, Campbell and Shiller (1988b), Fama and French (1993), Lamont (1998), Baker
and Wurgler (2000), Lettau and Ludvigson (2001), Campbell and Vuolteenaho (2004), Lettau and
Ludvigson (2005), Polk, Thompson, and Vuolteenaho (2006), Ang and Bekaert (2007), van Binsbergen
and Koijen (2010), Kelly and Pruitt (2013), van Binsbergen, Hueskes, Koijen, and Vrugt (2013), Li, Ng,
and Swaminathan (2013), and Da, Jagannathan, and Shen (2014), Glosten, Jagannathan, and Runkle
(1993), Breen, Glosten, and Jagannathan (1989).
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Collin-Dufresne (2015) provide the theoretical foundation that parameter learning can be

a source of long-run risk under Bayesian learning. We add to this literature.

The contributions of our paper, which distinguish it from the existing literature on

the interaction between learning and asset pricing, is as follows. First, we show that,

when equity markets are perfect and efficient, an asset pricing model that is closer to

the true asset pricing model, i.e. the model that better describes investors’ behavior,

should predict stock index returns better. This provides the theoretical foundation for the

economic significance of return predictability in assessing an asset pricing model. Then,

we show that, when learning about dividend dynamics is incorporated into a long run risks

model, the model’s ability to predict annual stock index returns substantially improves

from an R-square value of 11.8 percent to 22.3 percent, out-of-sample. This addresses

the Goyal and Welch (2008) critique and significantly revises upward the degree of return

predictability documented in the existing literature. Further, this lend support to the

view that both investors’ aversion to long run risks and learning about these risks play

important roles in determining asset prices and returns.2

To study how learning about dividend dynamics affects stock index prices and returns,

we need a realistic dividend model that is able to capture how investors form expectations

about future dividends. Inspired by Campbell and Shiller (1988b), we propose a model for

dividend growth rates that incorporates information in aggregate corporate earnings into

the latent variable model of van Binsbergen and Koijen (2010). Our model successfully

captures serial correlations in annual dividend growth rates up to 5 years. Further, our

model explains 55.1 percent of the variation in annual dividend growth rates between 1946

and 2013 in-sample and predicts 31.3 percent of the variation in annual dividend growth

rates between 1976 and 2013 out-of-sample. We comfortably reject the Null hypothesis

that expected dividend growth rates are constant and demonstrate that the superior

performance of our dividend model over baseline models, i.e. van Binsbergen and Koijen

(2010) and Campbell and Shiller (1988b), in predicting annual dividend growth rates is

statistically significant.

We document that uncertainties about parameters in our dividend model, especially

the parameter governing the persistence of the latent variable, are high and resolve slowly.

That is, these uncertainties remain substantial even at the end of our 68 years data

sample, suggesting that learning about dividend dynamics is difficult. Further, when

2Our paper is also consistent with the argument of Lettau and Van Nieuwerburgh (2008) that steady-
state economic fundamentals, or in our interpretation, investors beliefs about these fundamentals, vary
over time and these variations are critical in determining asset prices and returns.
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our dividend model is estimated at each point in time based on data available at the

time, model parameter estimates fluctuate, some significantly, over time as more data

become available. In other words, if investors estimate dividend dynamics using our

model, we expect their beliefs about the parameters governing the dividend process to

vary significantly over time. We then show that these changes in investors’ beliefs can

have large effects on their expectations of future dividends. Through this channel, changes

in investors’ beliefs about the parameters governing the dividend process can contribute

significantly to the variation in stock prices and returns.

We provide evidence that investors behave as if they learn about dividend dynamics

and price stocks using our model. First, we define stock yield as the discount rate that

equates the present value of expected future dividends to the current price of the stock

index. From the log-linearized present value relationship of Campbell and Shiller (1988a),

we write stock yields as functions of price-to-dividend ratios and long-run dividend growth

expectations, computed assuming that investors learn about dividend dynamics using our

model. We show that, between 1976 and 2013, these stock yields explain 15.2 percent

of the time variation in stock index returns over the next year. In comparison, stock

yields, assuming no learning, explain only 10.5 percent of the same variation. Next, we

embed our dividend model into an dynamic equilibrium asset pricing model that features

Epstein and Zin (1989) preferences, which capture preferences for the timing of resolution

of uncertainty, and consumption dynamics from the long-run risk model of Bansal and

Yaron (2004). We refer to this model as our long-run risk model. We find that, between

1976 and 2013, expected returns derived from our long-run risk model, assuming that

investors learn about the parameters governing the dividend process, predict 22.3 percent

of the variation in annual stock index returns. Learning accounts for about half of the

22.3 percent. The incremental contribution of learning to stock return predictability is

statistically significant.

We follow Cogley and Sargent (2008), Piazzesi and Schneider (2010), and Johannes,

Lochstoer, and Mou (2015), and define learning based on the anticipated utility of Kreps

(1998), where agents update using Bayes’ law but optimize myopically in that they do not

take into account uncertainties associated with learning in their decision making process.

That is, anticipated utility assumes agents form expectations not knowing that their

beliefs will continue to evolve going forward in time as the model keeps updating. Given

the relative complexity of our asset pricing model and the multi-dimensional nature of

learning, we find that solving our model with parameter uncertainties as additional risk
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factors is too computationally prohibitive.3 Therefore, we adopt the anticipated utility

approach as the more convenient alternative.

The rest of this paper is organized as follows. In Section 1, we introduce our dividend

model and evaluate its performance in capturing dividend dynamics. In Section 2, we

show that investors beliefs about dividend model parameters can vary significantly over

time as a result of Kreps’ learning about dividend dynamics. In Sections 3, we explain that

a model’s performance in predicting future stock index returns can be used as a criterion

to evaluate asset pricing models. We then demonstrate that a model that incorporates

Kreps’ learning better captures the time variation of stock index returns and explain why

such a finding provides us insight into investors’ preferences and the role of learning in

describing investors’ behavior. In Section 4, we conclude.

1 The Dividend Model

In this section, we present a model for dividend growth rates that extends the latent

variable model of van Binsbergen and Koijen (2010) by incorporating information in

aggregate corporate earnings. The inclusion of earnings information in explaining dividend

dynamics is inspired by Campbell and Shiller (1988b), who show that cyclical-adjusted

price-to-earnings (CAPE) ratios, defined as the log ratios between real prices and real

earnings averaged over the past decade, can predict future growth rates in dividends.

Define dt as log aggregate nominal dividend of the stock index and ∆dt+1 = dt+1 − dt
as its growth rate. The latent variable model of van Binsbergen and Koijen (2010) is

described by the following system of equations:

∆dt+1 − µd = xt + σdεd,t+1

xt+1 = ρxt + σxεx,t+1(
εd,t+1

εx,t+1

)
∼ i.i.d. N

(
0,

(
1 λdx

λdx 1

))
. (1)

Following van Binsbergen and Koijen (2010), we fit our model to the nominal dividend

process. As shown in Boudoukh, Michaely, Richardson, and Roberts (2007), equity

issuance and repurchase tend to be sporadic and random compared to cash dividends.

For this reason, we focus on modeling the cash dividend process and treat equity issuance

3Johannes, Lochstoer, and Collin-Dufresne (2015) provide the theoretical foundation for studying
uncertainties about model parameters as priced risk factors.
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and repurchase as unpredictable. In this model, time-t is defined in years to control

for potential seasonality in dividend payments and expected nominal dividend growth

rates follow a stationary AR[1] process and are functions of the latent variable xt, the

unconditional mean µd of dividend growth rates, and the persistence coefficient ρ of xt,

as follows:

Et [∆dt+s+1] = µd + ρsxt, ∀s ≥ 0. (2)

To introduce earnings information into this model, first define pt as log nominal price

of the stock index, et as log nominal earnings, πt as log consumer price index, and,

following Campbell and Shiller (1988b), consider the following vector-autoregression for

annual nominal dividend growth rates, log price-to-dividend ratios, and CAPE ratios: ∆dt+1

pt+1 − dt+1

pt+1 − ēt+1

 =

b10

b20

b30

+

b11 b12 b13

b21 b22 b23

b31 b32 b33


 ∆dt

pt − dt
pt − ēt

+

 σdεd,t+1

σ(p−d)ε(p−d),t+1

σ(p−ē)ε(p−ē),t+1

 ,

 εd,t+1

ε(p−d),t+1

ε(p−ē),t+1

 ∼ i.i.d. N

0,

 1 λ12 λ13

λ12 1 λ23

λ13 λ23 1


 . (3)

where, as in Campbell and Shiller (1988b), CAPE ratio is defined as:

pt − ēt = pt −

(
πt +

1

10

10∑
s=1

(et−s+1 − πt−s+1)

)
. (4)

We report estimates of b10, b11, b12, and b13 from (3), based on data between 1946 and

2013, in the first four columns of Table 1.4 Consistent with Campbell and Shiller (1988b),

we find that both price-to-dividend ratios and CAPE ratios have significant effects on

future dividends, but in the opposite direction. That is, increases in price-to-dividend

ratios predict increases in future dividend growth rates, but increases in CAPE ratios

predict decreases in future dividend growth rates. Interestingly, we see from Table 1 that

b12 + b13 = 0 cannot be statistically rejected. For this reason, we restrict b13 = −b12 and

re-estimate annual dividend growth rates as:

∆dt+1 = β0 + β1∆dt + β2 (ēt − dt) + σdεd,t+1, εd,t+1 ∼ i.i.d N(0, 1). (5)

4Throughout this paper, we report results based on overlapping monthly data. That is, in each month,
we fit or predict dividend growth rates and stock index returns over the next 12 months. We report
standard errors, F -statistics, p-values, and Q-statistics adjusted to reflect the dependence introduced by
overlapping monthly data.
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We note that the stock index price does not appear in (5). We report estimated coefficients

from (5) in the last three columns of Table 1. Results show that the β2 estimate is highly

statistically significant, suggesting that expected dividend growth rates respond to the

log ratios between historical earnings and dividends. Intuitively, high earnings relative to

dividends implies that firms have been retaining earnings in the past and so are expected

to pay more dividends in the future.

b10 b11 b12 b13 β0 β1 β2

-0.058 0.442∗∗∗ 0.103∗∗ -0.096∗∗ -0.033 0.434∗∗∗ 0.098∗∗

(0.066) (0.118) (0.042) (0.041) (0.029) (0.117) (0.041)

Table 1: Campbell and Shiller (1988b) Betas for Predicting Dividend Growth Rates: This
table reports coefficients from estimating dividend growth rates using (3) and (5), based on data between
1946 and 2013. Newey and West (1987) adjusted standard errors are reported in parentice. Estimates
significant at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

We extend (1) based on this insight that earnings contain information about future

dividends. Define ∆et+1 = et+1 − et as log nominal earnings growth rate and qt = et − dt
as log earnings-to-dividend ratio, our dividend model can be described by the following

system of equations:

∆dt+1 − µd = xt + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1,

xt+1 = ρxt + σxεx,t+1,

qt+1 − µq = θ
(
qt − µq

)
+ σqεq,t+1,εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (6)

In our model, dividend growth rates are linear combinations of four components. First, as

in van Binsbergen and Koijen (2010), they consist of the latent variable xt, which follows

a stationary AR[1] process. Second, they are affected by fluctuations in contemporaneous

earnings growth rates. That is, we expect firms to pay more dividends if their earnings

over the same period are high. Third, they are affected by changes in past earnings-to-

dividend ratios. That is, we expect firms to pay more dividends if they retained more

earnings in the past. Fourth, they consist of white noises εd,t. For convenience, we model

earnings-to-dividend ratios as an AR[1] process, and assuming that it is stationary implies

that dividend and earnings growth rates have the same unconditional mean µd. Then,
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substituting the third equation into the first equation of (6), we can re-write the first

equation of (6) as:

∆dt+1 = µd +
1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(qt − µq) +
φ

1− φ
σqεq,t+1 +

1

1− φ
σdεd,t+1. (7)

So we can solve for expected nominal dividend growth rates in our model as:

Et[∆dt+s+1] = µd +
ρs

1− φ
xt +

θs(ϕ− (1− θ)φ)

1− φ
(qt − µq), ∀s ≥ 0. (8)

This means that, aside from the two state variables, expected dividend growth rates are

functions of the unconditional means µd and µq of dividend growth rates and earnings-to-

dividend ratios, the persistence ρ and θ of the latent variable xt and earnings-to-dividend

ratios, and coefficients φ and ϕ that connect earnings information to dividend dynamics.

We note that earnings dynamics is not modeled explicitly in (6). However, we can solve for

nominal earnings growth rates from the processes for dividend growth rates and earnings-

to-dividend ratios:5

∆et+1 = µd +
1

1− φ
xt +

ϕ+ θ − 1

1− φ
(qt − µq) +

1

1− φ
σdεd,t+1 +

1

1− φ
σqεq,t+1. (9)

1.1 Data and Estimation

Due to the lack of reliable historical earnings data on the CRSP value-weighted market

index, we use the S&P500 index as the proxy for the market portfolio. That is, throughout

this study, data on prices, dividends, and earnings are from the S&P500 index. These

data can be found on Prof. Robert Shiller’s website.

We compute the likelihood of our dividend model using Kalman filters (Hamilton

(1994)) and estimate model parameters,

Θ = {µd, φ, ϕ, σd, ρ, σx, µq, θ, σq, λdx, λdq, λxq},

based on maximum-likelihood. See Appendix A.3 for details. Table 2 reports model

parameter estimates based on data between 1946 and 2013. Standard errors are based on

bootstrap simulation. Previous works have suggested a regime shift in dividend dynamics

before and after World War II. Fama and French (1988) note that dividends are more

smoothed in the post-war period. Chen, Da, and Priestley (2012) argue that the lack

5One can verify that, substituting (6) and (9) into qt+1 = et+1− dt+1 yields the third equation in (5).
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of predictability in dividend growth rates by price-to-dividend ratios in the post-war

period is attributable to this dividend smoothing behavior. Consistent with our intuition,

both φ and ϕ that connect earnings information to dividend dynamics are estimated to

be positive and highly statistically significant. That is, high contemporaneous earnings

growth rates imply high dividend growth rates, and high past earnings-to-dividend ratios

imply high dividend growth rates. The annual persistence of earnings-to-dividend ratios

is estimated to be 0.281. The latent variable xt is estimated to be more persistent at

0.528. In summary, there is a moderate level of persistence in nominal dividend growth

rates between 1946 and 2013 based on estimates from our model.

µd φ ϕ σd ρ σx
0.059 0.079 0.184 0.017 0.528 0.041

(0.015) (0.018) (0.028) (0.013) (0.160) (0.009)

µq θ σq λdx λdq λxq
0.713 0.281 0.280 -0.032 -0.157 0.024

(0.047) (0.116) (0.027) (0.131) (0.028) (0.124)

Table 2: Dividend Model Parameters: This table reports estimated parameters from our dividend
model, based on data between 1946 and 2013. Bootstrap simulated standard errors are reported in
parentice. Simulation is based on 100,000 iterations.

In Table 3, we report serial correlations, up to 5 years, for annual nominal dividend

growth rates and dividend growth rate residuals, which we define as the difference between

dividend growth rates and expected growth rates implied by our dividend model. We

also report serial correlations for dividend growth rate residuals implied by either of the

dividend models described in (1) and (3), which we refer to as the baseline models. We

then provide the Ljung and Box (1978) Q-statistics for testing if dividend growth rates

and growth rate residuals are serially correlated. We find that our dividend model is

reasonably successful at matching serial correlations in annual dividend growth rates for

up to 5 years. That is, our model’s dividend growth rate residuals appear to be serially

uncorrelated. In comparison, for the baseline models we find that their growth rate

residuals are serially correlated at the 95 percent confidence level.

In the first column of Table 4, we report the goodness-of-fit for describing nominal

dividend growth rates using our dividend model, based on data between 1946 and 2013.

We find that our model explains 55.0 percent of the variation in annual nominal dividend

growth rates, which represents a significant improvement over the baseline models. We
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∆dt+1 − Et[∆dt+1]

∆dt+1 J&L vB&K C&S

Serial Correlation (Years)

1 0.418 -0.027 0.123 0.156
2 -0.107 -0.128 -0.212 -0.197
3 -0.318 -0.036 -0.249 -0.224
4 -0.280 0.066 -0.153 -0.048
5 -0.139 0.198 -0.031 -0.240

Q-Statistics 32.49 5.263 12.36 12.96
[0.000] [0.385] [0.030] [0.024]

Table 3: Serial Correlations in Dividend Growth Rates and Residuals: This table reports the
1, 2, 3, 4, and 5 years serial correlations for nominal dividend growth rates and growth rate residuals
implied by our dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e.
vB&K), or the dividend model in Campbell and Shiller (1988b) (i.e. C&S), based on data between 1946
and 2013. Also reported are the Ljung-Box (1973) Q-statistics for testing if dividend growth rates and
growth rate residuals are serially correlated. p-values for Q-statistics are reported in square parentice.

know that at least part of this improved fit comes from adding more parameters to existing

models and is thus mechanical. Thus, to address the concern that our model overfits the

data, and that our model uses more data than the baseline models, we also assess our

model based on how it forecasts dividend growth rates out-of-sample. That is, instead

of fitting the model based on the full data sample, we predict dividend growth rates at

each point in time based on data available at the time. Forecasting performance is then

evaluated using the out-of-sample R-square value as defined in Goyal and Welch (2008):

R2 = 1−
1

T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Dividend Model])2

1
T−T0+1

∑T−1
t=T0

(∆dt+1 − µ̂d(t))
2

, (10)

where µ̂d(t) is the average of dividend growth rates up to time-t:

µ̂d(t) =
1

t

t−1∑
s=0

∆ds+1, (11)

where we use time-0 to denote the start of the data sample, time-T0 to denote the end of

the training period, and time-T to denote the end of the data sample. Due to the relative

complexity of our model, we use the first 30 years of our data sample as the training period

so that out-of-sample prediction is for the period between 1976 and 2013. Throughout this

paper, for predictive analysis, we assume investors have access to earnings information 3
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months after fiscal quarter or year end. The choice of 3 months is based on Securities and

Exchange Commission (SEC) rules since 1934 that require public companies to file 10-Q

reports no later than 45 days after fiscal quarter end and 10-K reports no later than 90

days after fiscal year end.6 To show that our findings are robust to this assumption, we

repeat the main results of this paper in Appendix A.1, assuming that earnings information

is known to investors with a lag of 6, 9 and 12 months. We assume that information about

prices and dividends is known to investors in real time.7 In the third and fourth columns

of Table 4, we report the out-of-sample R-square value for predicting annual dividend

growth rates and the corresponding p-value from the adjusted-MSPE statistic of Clark

and West (2007). Results show that our model predicts 31.3 percent of the variation

in annual nominal dividend growth rates, which is a significant improvement over the

R-square values of 18.5 percent and 13.5 percent from the baseline models. Interestingly,

we note that imposing the restriction that b12 + b13 = 0 in (3), so that price drops out

of the equation, significantly improves the out-of-sample forecasting performance of the

Campbell and Shiller (1988b) model, lending additional support for our decision to impose

this restriction.

In-Sample Out-of-Sample

Goodness-of-Fit p-value R2 p-value

J&L 0.551 0.000 0.313 0.000

vB&K 0.176 0.000 0.185 0.008

C&S 0.250 0.000 0.135 0.025

C&S 0.248 0.000 0.245 0.002
(Restricted)

Table 4: Dividend Growth Rates and Expected Growth Rates. The first and second columns
of this table report goodness-of-fit for describing nominal dividend growth rates using our dividend
model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. vB&K), the dividend
model in Campbell and Shiller (1988b) (i.e. C&S), or its restricted version where we set b12 + b13 = 0,
and the corresponding p-value. The second column reports the Bayesian information criterion. The
third and fourth columns report the out-of-sample R-square value for predicting dividend growth rates
and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). In-sample
(out-of-sample) statistics are based on data between 1946 and 2013 (1976 and 2013).

To examine that the difference in dividend growth rates predictability between using

6In 2002, these rules were updated to require large firms file 10-Q reports no later than 40 days after
fiscal quarter end and 10-K reports no later than 60 days after fiscal year end.

7Our results are also robust to assuming that dividend information is known with a 3 months lag.
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our dividend model and using one of the baseline models is statistically significant, we

define incremental R-square value for predicting dividend growth rates using our model

over one of the two alternative models as:

(I)R2 = 1−
1

T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|J&L])2

1
T−T0+1

∑T−1
t=T0

(∆dt+1 − Et[∆dt+1|Baseline Model])2
, (12)

and report statistics in Table 5. If this incremental R-square value is significantly positive,

it suggests that our dividend model is an improvement over baseline models in capturing

the variation in annual dividend growth rates. We note that the superior performance of

our dividend model over the alternatives is statistically significant at the 95% confidence

level.

Incremental R-squared of Our Dividend Model vs a Baseline Model

vB&K C&S
R2 p-value R2 p-value

0.132 0.048 0.201 0.012

Table 5: Performance Difference across Dividend Models. This table reports the out-of-sample
incremental R-squared, defined in (9), for predicting nominal dividend growth rates over the next year
between using expected rates implied by our dividend model or one of the two alternative models, i.e. the
model in van Binsbergen and Koijen (2010) (i.e. vB&K) and the model in Campbell and Shiller (1988b)
(i.e. C&S), and the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007).
Statistis are based on data between 1976 and 2013.

Although results in this section show that our model is successful in capturing the time

variation in nominal dividend growth rates both in-sample and out-of-sample, we recognize

that it inevitably simplifies the true process governing dividend dynamics. One can add

additional lags of earnings-to-dividend ratios to the model.8 Also, one can extend our

model by allowing model parameters, such as the persistence ρ of the latent variable xt or

the standard deviation σx of shocks to xt, to be time varying. However, the disadvantage

of incorporating such extensions is that a more complicated model is also more difficult

to estimate with precision in finite sample. For example, one way to assess whether

accounting for the possibilities of time varying model parameters improves our model’s

out-of-sample forecasting performance is to estimate model parameters based on a rolling

window, rather than an expanding window, of past data, so that observations from the

8For example, Campbell and Shiller (1988b) assume dividend growth rates are affected by earnings
information with up to 10 years of lag.
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distant past are not used to estimate model parameters. We provide this analysis in

Appendix A.1. In summary, we find that our model’s forecasting performance is not

improved by estimating model parameters based on a rolling window of past data.

1.2 Inflation and Real Rates

In a standard neoclassical asset pricing model, real dividend growth rates, not nominal

rates, are of interest to investors in forming their investment decisions. To convert nominal

dividend growth rates into real rates, we need to specify a process for inflation. For

convenience, we assume inflation follows a stationary AR[1] process as follows:

∆πt+1 − µπ = η (∆πt − µπ) + σπεπ,t+1, επ,t+1 ∼ N(0, 1). (13)

We can then derived the expression for expected real dividend growth rates based on

expected nominal rates and inflation rates as:

Et[∆d̃t+s+1] = (µd − µπ)+
ρs

1− φ
xt+

θs(ϕ− (1− θ)φ)

1− φ
(qt−µq)−ηs+1 (∆πt − µπ) , ∀s ≥ 0. (14)

where ∆d̃t = ∆dt −∆πt denotes real dividend growth rate.

µπ η σπ
0.038 0.555 0.026

(0.013) (0.109) (0.020)

Table 6: Inflation Model Parameters: This table reports estimated parameters from our dividend
model, based on data between 1946 and 2013. Bootstrap simulated standard errors are reported in
parentice. Simulation is based on 100,000 iterations.

In Table 7, we repeat the statistics reported in Table 4, but for fitting and predicting

annual real, rather than nominal, dividend growth rates. We find that our model also

outperforms the alternative baseline models in capturing the variation in annual real

dividend growth rates, i.e. 48.2 percent of the variation in real dividend growth rates

in-sample and 27.2 percent of the variation out-of-sample.

To provide more details on how various types of shocks to dividend growth rates and

inflation at a given time affect expected real dividend growth rates going forward, based

on our model and estimated parameters, reported in Table 3, we consider an one unit

12



In-Sample Out-of-Sample

Goodness-of-Fit p-value R2 p-value

J&L 0.482 0.000 0.272 0.001

vB&K 0.203 0.000 0.166 0.012

C&S 0.281 0.000 0.157 0.015

C&S 0.273 0.000 0.217 0.003
(Restricted)

Table 7: Dividend Growth Rates and Expected Growth Rates (Real Rates). The first and
second columns of this table report goodness-of-fit for describing real dividend growth rates using our
dividend model (i.e. J&L), the dividend model in van Binsbergen and Koijen (2010) (i.e. vB&K),
the dividend model in Campbell and Shiller (1988b) (i.e. C&S), or its restricted version where we set
b12 + b13 = 0, and our inflation model, and the corresponding p-valuel. The second column reports the
Bayesian information criterion. The third and fourth columns report the out-of-sample R-square value
for predicting dividend growth rates and the corresponding p-value from the adjusted-MSPE statistic of
Clark and West (2007). In-sample (out-of-sample) statistics are based on data between 1946 and 2013
(1976 and 2013).

change to εd,t, εx,t, εq,t, or επ,t and show how such a change affects expected real dividend

growth rates up to 10 years into the future, i.e. time-t to time-(t+ 10). We report these

impulse response functions in Figure 3. We note that shocks εx,t, εq,t, and επ,t have varying

degrees of persistent effects on future dividend growth rates with shocks to εx,t being most

persistent. On the other hand, shock εd,t is purely transient. Further, shock επ,t affects

future real dividend growth expectations negatively so that an increase in inflation rate

reduces future expected real dividend growth rates.

2 Parameter Uncertainty and Learning

The difference between in-sample and out-of-sample prediction is the assumption made

on investors’ information set. Model parameters reported in Table 2 are estimated using

data up to 2013, so they reflect investors’ knowledge of dividend dynamics at the end

of 2013. That is, if investors were to estimate our model in an earlier date, they would

have estimated a set of parameter values different from those reported in Table 2. This

is a result of investors’ knowledge of dividend dynamics evolving as more data become

available. We call this learning. That is, we use learning to refer to investors estimating

model parameters at each point in time based on data available at the time. In this section,

13



εd,t εx,t εq,t επ,t

Figure 1: Impulse Response Functions on Shocks that Affect Real Dividend Growth Rates.
This figure plots the changes to expected dividend growth rates over the next 10 years due to a unit
change in shocks to dividend growth rates: εd,t, εx,t, εq,t, and επ,t.

we summarize how learning affects investors’ beliefs about the parameters governing the

dividend process, assuming that investors learn about dividend dynamics using our model.

We then show that learning can have significant asset pricing implications.

In Figure 2, we report estimates of the eight model parameters in (14) that affect

expected dividend growth rates, assuming that our model is estimated based on data up to

time-τ , for τ between 1976 and 2013. There are several points we take away from Figure

2. First, there is a gradual upward drift in investors’ beliefs about the unconditional

mean µq of earnings-to-dividend ratios. This suggests that firms have been paying a

smaller fraction of earnings as cash dividends in recent decades. Second, there are gradual

downward drifts in investors’ beliefs about φ and ϕ that connect earnings information to

dividend dynamics. This means that dividends have become more smoothed over time.

Third, a sharp drop in investors’ beliefs about the persistence θ of earnings-to-dividend

ratios towards the end of our data sample is due to the abnormally low earnings reported

in late 2008 and early 2009 as a result of the financial crisis and the strong stock market

recovery that followed. Also, estimates of inflation model parameters are relatively stable

over time.

It is clear from Figure 2 that the persistence ρ of the latent variable xt is the parameter

hardest to learn and least stable over time. This observation is consistent with results

reported in Table 2, which show that, of all model parameters, ρ is estimated with the

14



µd µq φ ϕ

ρ θ µπ η

Figure 2: Evolution of Dividend and Inflation Model Parameters. This figure plots estimates
of the eight dividend model parameters that affect expected real dividend growth rates, assuming that
these parameters are estimated based on data up to time-τ for τ between 1976 and 2013.

highest standard error (i.e. 0.160). Investors’ beliefs about ρ fluctuate significantly over

the sample period, especially around three periods during which beliefs about ρ sharply

drop. The first is at the start of dot-com bubble between 1995 and 1998. The second

is during the crash of that bubble in late 2002 and early 2003. The third is during the

financial crisis in late 2008 and early 2009. Further, there is also a long term trend that

sees a gradual decrease in investors’ beliefs about ρ since early 1980s. For example, if

we were to pick a random date between 1976 and 2013 and estimate our model based on

data up to that date, on average we would have estimated a ρ of 0.734.9 This would be

significantly higher than the 0.528 reported in Table 2 that is estimated using the full

data sample.

We can infer, from standard errors reported in Table 2, that learning about dividend

dynamics is a slow process. That is, even with 68 years of data, there are still significant

uncertainties surrounding the estimates of some model parameters. For example, the 95

percent confidence interval for the persistence ρ of the latent variable xt is between 0.214

and 0.842. The same confidence interval for the persistence θ of earnings-to-dividend

9To establish a point of reference, Bansal and Yaron (2004) calibrate annualized persistence of expected
dividend growth rate to be 0.97512 = 0.738.
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ratios is between 0.054 and 0.508. To quantify the speed of learning, following Johannes,

Lochstoer, and Mou (2015), for each of the eight parameters that affect expected dividend

growth rates, we construct a measure that is the inverse ratio between the bootstrap

simulated standard error assuming that the parameter is estimated based on data up to

2013 and the bootstrap simulated standard error assuming that the parameter is estimated

based on 10 additional years of data (i.e. if the parameter were estimated in 2023). See

Appendix A.2 for details on bootstrap simulation. In other words, this ratio reports how

much an estimated parameter’s standard error would reduce if investors were to have 10

more years of data. So the closer this ratio is to 1, the more difficult it is for investors

to learn about the parameter. In Table 8, we report this ratio for each of the six model

parameters. Overall, 10 years of additional data would only decrease the standard errors

of parameter estimates by between 5 and 8 percent. Further, consistent with results from

Figure 2 and those reported in Table 2, we find that it is more difficult to learn about ρ

than about any of the other five model parameters.

µd µq φ ϕ ρ θ µπ η

0.924 0.924 0.926 0.928 0.951 0.920 0.923 0.918

Table 8: Speed of Learning about Model Parameters: This table reports the speed of learning for
the six model parameters that affect expected dividend growth rates. Speed of learning is defined as the
inverse ratio between the bootstrap simulated standard error assuming that the parameter is estimated
based on data up to 2013 and the bootstrap simulated standard error assuming that the parameter is
estimated based on 10 additional years of data (i.e. if the parameter were estimated in 2023). Simulation
is based on 100,000 iterations.

We show that learning about dividend dynamics can have significant asset pricing

implications. Consider the log linearized present value relationship in Campbell and

Shiller (1988a):

pt − dt =
κ0

1− κ1
+
∞∑
s=0

κs1 (Et[∆dt+s+1]− Et[rt+s+1]) , (15)

where κ0 and κ1 are log-linearizing constants and rt+1 is the stock index’s log return.10

The expression is a mathematical identity that connects price-to-dividend ratios, expected

dividend growth rates, and discount rates (i.e. expected returns). We define stock yield

as the discount rate that equates the present value of expected future dividends to the

10To solve for κ0 = log(1 + exp(p− d))− κ1(p− d) and κ1 = exp(p−d)
1+exp(p−d) , we set unconditional mean of

log price-to-dividend ratios p− d to 3.46 to match the data between 1946 and 2013. This gives κ0 = 0.059
and κ1 = 0.970.
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current price of the stock index. That is, rearranging (15), we can write stock yield as:

syt ≡ (1− κ1)

∞∑
s=0

κs1Et[∆rt+s+1]

= κ0 − (1− κ1)(pt − dt) + (1− κ1)
∞∑
s=0

κs1Et[∆dt+s+1]. (16)

Define long run dividend growth expectation as:

∂t ≡ (1− κ1)

∞∑
s=0

κs1Et[∆dt+s+1]. (17)

Given that price-to-dividend ratios are observed, there is a one-to-one mapping between

long run dividend growth expectations and stock yields. We note that long run dividend

growth expectations are specific to the dividend model and its parameters. For example,

using our dividend model, we can re-write (17) as:

∂t = (1− κ1)
∞∑
s=0

κs1

(
µd +

ρs

1− φ
xt +

θs(ϕ− (1− θ)φ)

1− φ
(qt − µq)

)
= µd +

1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (18)

If a different dividend model is used, long run dividend growth expectations will also

be different. For example, if we assume that dividend growth rates follow a white noise

process centered around µd, we can re-write (17) instead as ∂t = µd. Further, because long

run dividend growth expectations are functions of dividend model parameters, it is also

affected by whether model parameters are estimated once based on the full data sample,

or estimated at each point in time based on data available at the time. The first case

corresponds to investors having full knowledge of the parameters describing the dividend

process, whereas the second case corresponds to investors having to learn about dividend

dynamics. In this paper, we assume that when investors learn, they do not impose a

prior and use the classical estimator of model parameters. We relax this assumption and

consider investors’ learning under non-flat priors in Appendix A.1. We document similar

results. In Figure 3, we plot long run dividend growth expectations, computed using

our model and assuming that investors either have to learn, or do not learn, about model

parameters. We find that learning has a considerable effect on investors’ long run dividend

growth expectations, assuming that investors learn about dividend dynamics using our

model.
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Figure 3: Expected Long Run Dividend Growth Rates. This figure plots long run dividend
growth expectations, computed using our dividend model, for the period between 1976 and 2013. Dividend
model parameters are estimated based on data since 1946. Under full information, model parameters are
estimated once based on the full data sample. Under learning, those parameters are estimated at each
point in time based on data available at the time.

In Figure 4, we plot stock yields, computed by substituting (18) into (16):

syt = κ0 − (1− κ1)(pt − dt) + µd +
1− κ1

1− φ

(
1

1− κ1ρ
xt +

ϕ− (1− θ)φ
1− κ1θ

(qt − µq)
)
. (19)

Dividend model parameters are either estimated once based on the full data sample or

estimated at each point in time based on data available at the time. We also plot price-to-

dividend ratios in Figure 4, and scale price-to-dividend ratios to allow for easy comparison

to stock yields. We find that there is almost no noticeable difference between the time

series of price-to-dividend ratios and stock yields, computed assuming that investors do

not learn. This suggests that the variation in long run dividend growth expectations,

assuming that investors do not learn, is minimal relative to the variation in price-to-

dividend ratios, so the latter dominates the variation in stock yields. However, assuming

that investors have to learn, we find significant differences between the time series of

price-to-dividend ratios and stock yields.
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Figure 4: Stock Yields. This figure plots stock yields syt, computed using our dividend model, and
log price-to-dividend ratios (scaled) for the period between 1976 and 2013. Dividend model parameters
are estimated based on data since 1946. Under full information, model parameters are estimated once
based on the full data sample. Under learning, those parameters are estimated at each point in time
based on data available at the time.

3 Learning about Dividend Dynamics and Investor’

Revealed Preferences

Results in the previous section show that parameters in our dividend model can be difficult

to estimate with precision in finite sample. As a result, we argue that learning about

model parameters can have significant asset pricing implications. This claim is based on

the assumption that our model captures investors’ expectations about future dividends.

That is, we assume that investors behave as if they learn about dividend dynamics using

our model. In this section, we present evidence that supports this assumption. We show

that stock yields, computed assuming that investors learn about dividend dynamics using

our model (see (19)), predict future stock index returns. To establish a baseline, note

that, if we assume dividend growth rates follow a white noise process centered around µd,

stock yield can be simplified to:

syt = κ0 − (1− κ1)(pt − dt) + µd. (20)

That is, under the white noise assumption, stock yields are just scaled price-to-dividend

ratios. We regress stock index returns over the next year on price-to-dividend ratios,

based on data between 1976 and 2013. We report regression statistics in the first column
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of Table 9. Standard errors reported are Newey and West (1987) adjusted.11 Results from

Table 9 show that, between 1976 and 2013, price-to-dividend ratios explain 10.2 percent

of the variation in stock index returns over the next year.

We then regress stock index returns over the next year on stock yields in (19),

computed assuming that investors estimate model parameters at each point in time based

on data available at the time. We report regression statistics in the second column of

Table 9. The R-square value from this regression is 15.2 percent. We note that the

only difference between this regression and the baseline regression is the assumption on

dividend dynamics. That is, we assume that investors learn about dividend dynamics

using our model in this regression, whereas in the baseline regression we assume that

expected dividend growth rates are constant. This means that we can attribute the

increase in the R-square value from 10.2 percent to 15.2 percent to our modeling of

learning about dividend dynamics. We also run a bivariate regression of stock index

returns over the next year on both price-to-dividend ratios and stock yields, computed

assuming that investors learn about dividend dynamics using our model, and report

regression statistics in the third column of Table 9. Results show that stock yields,

computed assuming that investors learn about dividend dynamics using our model, strictly

dominate price-to-dividend ratios in explaining future stock index returns.

To emphasize the importance of learning, we regress stock index returns over the next

year on stock yields in (19), computed assuming that investors do not learn. That is,

instead of estimating model parameters at each point in time based on data available

at the time, we estimate those parameters once based on the full data sample. So at

every point in time, the same parameter estimates are used to compute stock yields. We

report regression statistics in the fourth column of Table 9. Results show that stock

yields, computed using our model but assuming that investors do not learn, perform

roughly as well as price-to-dividend ratios in predicting future stock index returns. This

is consistent with results from Figure 4, which show that there is almost no noticeable

difference between the time series of price-to-dividend ratios and stock yields, computed

using our model but assuming that investors do not learn.

It is also worth emphasizing that, for learning to be relevant, the dividend model itself

must be used by investors. To illustrate this point, we regress stock index returns over

the next year on stock yields, computed assuming that investors learn about dividend

11Stambaugh (1999) shows that, when variables are highly serially correlated, OLS estimators’ finite-
sample properties can deviate from the standard regression setting.
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J&L vB&K C&S

pt − dt -0.116∗∗ 0.016
(0.054) (0.089)

syt 3.964∗∗∗ 4.355∗ 3.000∗∗ 2.741∗∗

(Learning) (1.133) (2.199) (1.390) (1.056)

syt 3.753∗∗

(Full Info.) (1.674)

R2 (Return) 0.102 0.152 0.152 0.105 0.088 0.106

R2 (Excess Return) 0.090 0.140 0.141 0.093 0.075 0.094

Table 9: Stock Index Returns and Stock Yields: This table reports the coefficient estimates and
R-square value from regressing stock index returns over the next year on log price-to-dividend ratios
and stock yields, computed using our dividend model (i.e. J&L), the dividend model in van Binsbergen
and Koijen (2010) (i.e. vB&K), or the dividend model in Campbell and Shiller (1988b) (i.e. C&S), and
assuming investors have to learn (i.e. Learning), or do not learn (i.e. Full Info.), about model parameters.
Regression is based on data between 1976 and 2013. Dividend model parameters are estimated based on
data since 1946. Newey and West (1987) standard errors are reported in parentice. Estimates significant
at 90, 95, and 99 percent confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

dynamics using either of the baseline models. We report regression statistics in the fifth

and sixth columns of Table 9. We find that stock yields, computed assuming that investors

learn using either of the baseline models, also perform roughly as well as price-to-dividend

ratios, 10.5 percent versus 10.2 percent, in explaining future dividend growth rates.

We note that stock index returns combine the risk free rate and risk premium. To

investigate whether the gain in return predictability is for predicting the risk free rate or

the risk premium, in the last row of Table 9, we report the R-square value for predicting

stock index excess returns.12 Results show that the gap in forecasting performance

between stock yields, computed assuming that investors learn about dividend dynamics

using our model, and price-to-dividend ratios is entirely for predicting the risk premium

and is not for predicting the risk free rate.

As defined in (19), stock yield is a measure of long run expected returns, i.e. the

12Let r̂t be stock index return forecast and rf,t be the risk free rate. The in-sample R-square value

for predicting stock index returns is ˆvar(rt+1−r̂t+1)
ˆvar(rt+1)

, where ˆvar(·) is the sample variance. The in-sample

R-square value for predicting stock index excess returns is
ˆvar((rt+1−rf,t+1)−(r̂t+1−rf,t+1))

ˆvar(rt+1−rf,t+1)
.
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weighted average discount rates of all future cash flows. Further, (19) is purely a math-

ematical identify, so computing stock yield does not require the econometrician to make

assumptions on the asset pricing model, i.e. the stochastic discount factor, used by

investors. In other words, the econometrician does not need to assume whether investors

have constant relative risk aversion (CRRA) preferences or Epstein and Zin (1989) pref-

erences in computing stock yield. However, to derive the stock index’s expected return

next period from stock yield, the econometrician also needs to fix the term structure of

expected returns, and so more information or assumption is needed. More specifically,

different asset pricing models have different implications on the term structure of expected

returns, and thus implies different expected returns next period conditioning on stock

yield.

For the rest of this section, we first provide the theoretical foundation that how well

stock index returns can be predicted using an asset pricing model’s implied expected

returns can be used to evaluate the asset pricing model. Then, we incorporate learning

about dividend dynamics into a long run risks model and show that as much as 22.3

percent of the variation in annual stock index returns can be predicted using our long run

risks model.

3.1 Return Predictability and Assessing Asset Pricing Models

The criterion we propose to assess an asset pricing model is the deviation of that candidate

model’s implied expected returns from the expected returns implied by the true model.

The true model here is defined as the asset pricing model that best describes the behavior

of the marginal investor who prices that asset in a frictionless and efficient market. We

focus on the stock market index as the asset in question, proxied by the S&P 500 stock

index. Let Mi be a candidate model, M0 be the unobserved true asset pricing model,

rt be log return of the stock index, Et[rt+1|Mi] be the Mi-endowed-investor’s expected

next period stock return, and Et[rt+1|M0] be expected return under the true model. The

following definition defines the best asset pricing model, i.e. the candidate model that

is closet to the true model) as the model that minimizes the mean squared difference

between its model implied expected returns and the expected returns implied by the true

model.

Definition 1 A candidate asset pricing model Mi is a better approximation of the true
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asset pricing model (M0) than model Mj if and only if:

E
[
(Et[rt+1|M0]− Et[rt+1|Mi])

2
]
< E

[
(Et[rt+1|M0]− Et[rt+1|Mj ])

2
]
.

A clear inconvenience of this definition is that the true asset pricing model M0 is never

observable, and thus Et[rt+1|M0] is unobservable. To circumvent this issue, we notice that,

assuming markets are frictionless and efficient and investors form rational expectations,

the error term εt+1 = rt+1 − Et[rt+1|M0] is orthogonal to any information that is time t

measurable. This leads to the following proposition.

Proposition 1 A candidate asset pricing modelMi is a better approximation of the true

asset pricing model (M0) than model Mj if and only if:

1−
E
[
(rt+1 − Et[rt+1|Mi])

2
]

E [(rt+1 − µ̂r(t))2]
> 1−

E
[
(rt+1 − Et[rt+1|Mj ])

2
]

E [(rt+1 − µ̂r(t))2]

where µ̂r(t) = 1
t

∑t−1
s=0 rs+1 is the average of stock index returns up to time-t. We leave all

proofs to Appendix A.4. In other words, we can denote:

R2(Mi) = 1−
1

T−T0+1

∑T−1
t=T0

(rt+1 − Et[rt+1|Mi])
2

1
T−T0+1

∑T−1
t=T0

(rt+1 − µ̂r(t))2
(21)

as the R-square value for how well can an investor endowed with a candidate model Mi

predict next period stock index returns. Based on Proposition 1, we employ it as an

estimate of how close the candidate model Mi is to the true model.

3.2 Return Predictability and Learning in a Dynamic

Equilibrium Asset Pricing Model

To derive the term structure of expected returns, we need to build a dynamic equilibrium

asset pricing model and that requires us to specify investors’ preferences and consumption

dynamics. We merge dividend model with Epstein and Zin (1989) investors’ preferences

and persistent dividend growth rates as modeled in Bansal and Yaron (2004).

Epstein and Zin (1989) has been one of the most widely used expressions for investors’

perferences in the literature. Investors’ preferences are defined recursively as:

Ut =

[
(1− δ)C̃

1−α
ζ

t + δ
(
Et
[
U1−α
t+1

]) 1
ζ

] ζ
1−α

, ζ =
1− α
1− 1

ψ

, (22)

23



where C̃t is real consumption, ψ is the elasticity of intertemporal substitution (EIS), and

α is the coefficient of risk aversion. We note that, the representative agent prefers early

resolution of uncertainty if ζ < 0 and prefers late resolution of uncertainty if ζ > 0.13 Log

of the intertemporal marginal rate of substitution (IMRS) is:

mt+1 = −ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1) s̃t+1, (23)

where s̃t+1 denotes real return of the representative agent’s wealth portfolio. We assume

that the expected growth rates in real consumption follow an AR[1] process and allow

volatility in consumption growth rates to be time varying. In other words, we describe

real consumption growth rates using the following system of equations:

∆c̃t+1 − µc =
1

γ(1− φ)
xt + σtεc,t+1

σ2
t+1 − σ2

c = %
(
σ2
t − σ2

c

)
+ σςες,t+1. (24)

The correlation matrix for shocks to dividend and real consumption dynamics can be

written as: 

εc,t+1

εd,t+1

εx,t+1

ες,t+1

εq,t+1


∼ i.i.d. N


0,



1 0 0 0 0

0 1 λdx 0 λdq

0 λdx 1 0 λxq

0 0 0 1 0

0 λdq λxq 0 1




. (25)

Because we do not use actual consumption data in this paper, the correlations that involve

shocks εc,t or ες,t to the real consumption process cannot be identified. So, for convenience,

we set them to zeros. The rest of the correlation matrix can be estimated from dividend

and earnings data.

We note that the unconditional mean of real consumption growth rates must equal to

the unconditional mean of dividend growth rates minus inflation rates, or else dividend

as a fraction of consumption will either become negligible or explode. We assume that

the latent variable xt in real consumption growth rates is the same as the latent variable

in dividend growth rates. We recall that dividend growth rates in our model have the

functional form given in (8). So γ is the dividend leverage parameter. We set it to 5. The

primary effect of this parameter is on the unconditional mean of the equity premium. In

13Or equivalently, if α > 1, then the representative agent prefers early resolution of uncertainty if ψ > 1
and prefers late resolution of uncertainty if ψ < 1.
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Bansal and Yaron (2004), the persistence ρ of the latent variable xt is set to 0.975 at the

monthly frequency. A common criticism of the long-run risk model has always been that

it requires a small but highly persistent component in consumption and dividend growth

rates that is difficult to find support in the data.14 This criticism serves as the rationale

for why we expect learning to be important. To calibrate the dynamics of consumption

volatility, we follow Bansal and Yaron (2004), who set σc to 0.0078, % to 0.987, and σς to

0.23 · 10−5 at the monthly frequency. We convert these to their annual equivalents. We

note that our long run risk model differs from the setup in Bansal and Yaron (2004) in

that we shut down heteroskedastic volatility in the dividend process. We do this in order

to incorporate our dividend model, which is estimated under homoskedasticity.

We solve this specification of our long-run risk model in Appendix 1.6. In solving this

model, we closely follow the steps in Bansal and Yaron (2004). The model consists of three

state variables: 1) the latent variable xt, 2) the latent variable σ2
t , and 3) earnings-to-

dividend ratios. We can solve for price-to-dividend ratio in this model as a linear function

of the three state variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3

(
qt − µq

)
+Ad,4(∆πt − µπ). (26)

We can solve for expected return over the short-horizon as:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,4(∆πt − µπ), (27)

where coefficients Ad,· and Ar,·, derived in Appendix A.5, are functions of the parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics. We

note that, substituting (26) into (27), we can avoid estimating time varying consumption

volatility directly and instead write expected return over the short horizon as a function

state variables that can be estimated from dividend dynamics and price-to-dividend ratio:

Et [rt+1] = A0 +A1xt +A2(pt − dt) +A3(qt − µq) +A4(∆πt − µπ),

A0 =
Ar,0Ad,2 −Ar,2Ad,0

Ad,2
, A1 =

Ar,1Ad,2 −Ar,2Ad,1
Ad,2

(28)

A2 =
Ar,2
Ad,2

, A3 = −
Ar,2Ad,3
Ad,2

, A4 =
Ar,4Ad,2 −Ar,2Ad,4

Ad,2
. (29)

In Figure 5, we plot the expected returns in (28), computed either assuming investors

learn or that they have full information, along with realized returns over the next year,

for the period between 1976 and 2013.

14See Beeler and Campbell (2012), Marakani (2009).
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Figure 5: Returns and Model Implied Expected Returns. This figure plots expected returns
derived from our long run risks model, as well as the actual stock index returns over the next year, for
the period between 1976 and 2013. Dividend model parameters are estimated based on data since 1946.

Using expected returns in (28), we examine how our long run risks model, assuming

investors learn about dividend model parameters, performs in predicting future stock

index returns. We measure forecasting performance using the out-of-sample R-square

value in (21). We use the first 30 years of the data sample as the training period and

compute the out-of-sample R-square value using data between 1976 and 2013. In Table 10,

we report the quasi out-of-sample R-square value for predicting annual stock index returns

using expected returns, computed assuming investors learn about dividend dynamics using

our long-run risk model. That is, we estimate dividend model parameters at each point

in time based on data available at the time and substitute these parameters into (28)

to compute model implied expected returns. We find that, between 1976 and 2013, our

long-run risk model predicts as much as 22.3 percent of the variation in annual stock

index returns.

To isolate the incremental contribution of learning to the reported R-square value

in predicting stock index returns, we recalculate Ar,· and Ad,· in (28) using dividend

model parameters estimated using the full data sample, and compute long run risks model

implied expected returns, assuming full information , i.e. Et[rt+1|Full Info.]. We then

report the out-of-sample R-square value for predicting stock index returns using our long

run risks model, assuming full information, in the second column of Table 10. We see

that, under full information, the R-square value reduces from 22.3 percent to 11.8 percent,

i.e. learning acounts for about half of the return predictability documented.
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To examine the statistical significance of this difference, we report, in the third column

of Table 10, the incremental R-square value defined as:

(I)R2 = 1−
1

T−T0+1

∑T−1
t=T0

(rt+1 − Et[rt+1]|Learning])2

1
T−T0+1

∑T−1
t=T0

(rt+1 − Et[rt+1|Full Info.])2
. (30)

Results from Table 10 show that the incremental gain in return predictability that is

attributable to learning is statistically significant at the 95 percent confidence level.

Learning Full Info. Difference

R2 p-value R2 p-value R2 p-value

0.223 0.003 0.118 0.037 0.101 0.033

Table 10: Predictive Performance under Learning and Full Information. This table reports
the out-of-sample incremental R-squared, defined in (30), for predicting stock index returns over the
next year between using our long run risks model implied expected returns, assuming investors either
learn about dividend model parameters or have full information, and the corresponding p-value from the
adjusted-MSPE statistic of Clark and West (2007). Statistis are based on ata between 1976 and 2013.

To provide some details on our long-run risk model’s forecasting performance, we

follow Goyal and Welch (2008) and define the cumulative sum of squared errors difference

(SSED) for between predicting stock index return using long run risks implied expected

returns, assuming learning, and using historical mean returns as:

SSEDt =
t−1∑
s=T0

(rs+1 − Et[rs+1|Learning])2 −
t−1∑
s=T0

(rs+1 − µ̂r(t))
2 . (31)

The SSED is ploted in Figure 6. If the forecasting performance of our long-run risk model

is stable and robust, we should observe a steady but constant decline in SSED. Instead,

if the forecasting performance is especially poor in certain sub-period of the data, we

should see a significant drawback in SSED during that sub-period. Figure 6 shows that

our model’s forecasting performance is consistent through the majority of the data sample.

In detail, about one third of the forecasting performance is realized during the first two

decades of the data sample, about two-third is realized during the few years surrounding

the dot-com crash, and relatively flat over the last decade.

Further, to isolate the contribution of learning about dividend dynamics to SSED,

we plot, in the left subfigure of Figure 6, the incremental SSED predicting stock index

return using long run risks implied expected returns, assuming learning, and using those
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Figure 6: Stock Index Returns and Model Implied Expected Returns (Cumulative SSE
Difference). This figure plots the cumulative sum of squared errors difference for the period between
1976 and 2013. Dividend model parameters are estimated based on data since 1946.
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assuming full information:

(I)SSEDt =
t−1∑
s=T0

(rs+1 − Et[rs+1|Learning])2 −
t−1∑
s=T0

(rs+1 − Et[rs+1|Full Info.])2 . (32)

We note that the incremental gain in return predictability due to learning is consistent

throught most of the data sample, except for the last decade, when the contribution of

learning is flat . Further, there is no noticable difference in the relative importance of

learning during the dot-com crash compared to other periods in the data sample.

In the right subfigure of Figure 7, we plot the difference that makes up the rest of

SSED, i.e. SSEDt − (I)SSEDt. These results show that the predictive performance of

our long run risks model, assuming investors do not learn about dividends, is almost

exclusively realized during the few years surrounding the crash of the dot com bubble.

Learning − Full Info. Full Info.

Figure 7: Decomposition of Cumulative SSE Difference. This figure plots the cumulative sum
of squared errors difference (SSED), decomposed into (I)SSED and SSED − (I)SSED, for the period
between 1976 and 2013. Dividend model parameters are estimated based on data since 1946.
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3.2.1 The Dot-Com Crash

Figures 5 and 6 suggest that the dot-com crash plays an especially important role in the

return predictability results. To emphasize that the predictive performance of our long

run risks model, assuming learn, and the incremental contribution of learning to return

predictability, is not exclusively restricted to the few years surrounding the dot com crash,

we recalculate the R-squared value and incremental R-squared value reported in Table

10, but for the dot com crash alone and for the subsample excluding the dot com crash.

These results are reported in Table 11. We find that the predictive performance of our

long run risks model, assuming learning, is statistically significant excluding the dot com

crash, so is the incremental contribution of learning to this predictive performance.

Full Info. Learning Learning − Full Info.

R2 p-value R2 p-value R2 p-value

10/1999 - 09/2002 0.640 0.364 0.714 0.298 0.198 0.585

Other Periods -0.024 1.000 0.097 0.070 0.121 0.058

Table 11: Predictive Performance under Learning and Full Information. This table reports
the out-of-sample incremental R-squared, defined in (30), for predicting stock index returns over the
next year between using our long run risks model implied expected returns, assuming investors either
learn about dividend model parameters or have full information, and the corresponding p-value from the
adjusted-MSPE statistic of Clark and West (2007). Statistis are based on two subsamples of the data:
1) the dot com crash between March 2000 and October 2002 and 2) between 1976 and 2013, excluding
the dot com crash.

3.2.2 An Alternative Specification of the Long Run Risks Model

To show that our findings are not restricted to one specification of the long run risks

model, we consider predicting stock index returns using an alternative model specification

in this subsection. In this alternative specification, we assume consumption volatility to

be constant over time. We note that in our first specification, time varying volatility in

real consumption growth rates serves as an additional state variable, so to make up for the

lost state variable, we assume the correlation between shocks εc,t+1 to real consumption

growth rates and shocks εq,t+1 to earnings-to-dividend ratios to be time varying.15 In

other words, this specification allows for the conditional covariance of real consumption

and dividend growth rates to vary over time. We note that this conditional covariance

15We note that this additional state variable that cannot be estimated from dividend dynamics alone
is necessary for the model to fit both the time series of dividends and price-to-dividend ratios.
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can be negative in some states of the world, i.e. dividends can be hedges against shocks

to consumption. This gives us our second specification of consumption dynamics, which

can be described by the following system of equations:

∆c̃t+1 − µc =
1

γ(1− φ)
xt + σcεc,t+1

λt+1 − µλ = % (λt − µλ) + σλελ,t+1, (33)

where λt is the correlation between εc,t+1 in (33) and εq,t+1 in (6) and serves as the addi-

tional state variable in this specification of consumption dynamics. Thus, the correlation

matrix for shocks to dividend and real consumption dynamics can be written as:

εc,t+1

εd,t+1

εx,t+1

ελ,t+1

εq,t+1


∼ i.i.d. N


0,



1 0 0 0 λt

0 1 λdx 0 λdq

0 λdx 1 0 λxq

0 0 0 1 0

λt λdq λxq 0 1




. (34)

We set the consumption dynamics parameters σc and % to be the same as those in the

first specification. We assume the unconditional mean µλ of the latent variable λt to be

0 and the standard deviation of shocks to λt to be 0.033 at the monthly frequency.16

Because this specification of consumption dynamics has not been adopted in the existing

literature, our choice of σλ can appear arbitrary. However, we note that our results are

not sensitive to setting σλ to 0.033.17 We solve this specification of our long run risk

model in the Appendix. In solving this model, we closely follow the steps in Bansal and

Yaron (2004). The model consists of three state variables: 1) the latent variable xt, 2) the

latent variable λt, and 3) earnings-to-dividend ratios. We can solve for price-to-dividend

ratio in this model as a linear function of the three state variables:

pt − dt = Ad,0 +Ad,1xt +Ad,2λt +Ad,3
(
qt − µq

)
+Ad,4 (∆πt − µπ) . (35)

We can solve for expected return over the short-horizon as:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,4 (∆πt − µπ) , (36)

16Because, following Bansal and Yaron (2004), calibrations of σc and % are reported in monthly
frequency, we report our parameter choices for µλ and σλ in monthly frequency as well for ease of
comparison. In solving our model, we convert them to their annual equivalents.

17We also tried setting σλ to other values between 0.01 and 0.10 and find our results to be relatively
unchanged.

31



where coefficients Ad,· and Ar,·, derived in the Appendix, are functions of the parameters

governing investors’ preferences, consumption dynamics, and dividend dynamics. We note

that, substituting (35) into (36), we can avoid estimating time varying correlation between

shocks to real consumption growth rates and shocks to earnings-to-dividend ratios directly

and instead write expected return over the short horizon as a function state variables that

can be estimated from dividend dynamics and price-to-dividend ratio:

Et [rt+1] = A0 +A1xt +A2(pt − dt) +A3(qt − µq) +A4(∆πt − µπ),

A0 =
Ar,0Ad,2 −Ar,2Ad,0

Ad,2
, A1 =

Ar,1Ad,2 −Ar,2Ad,1
Ad,2

, (37)

A2 =
Ar,2
Ad,2

, A3 = −
Ar,2Ad,3
Ad,2

, A4 =
Ar,4Ad,2 −Ar,2Ad,4

Ad,2
. (38)

In Table 12, we report the out-of-sample R-square value for predicting stock index returns

using this alternative long run risks model. We find very similar results. Between 1976

and 2013, this alternative long run risks model, assuming learning, predicts as much as

21.6 percent of the variation in annual stock index returns. Learning accounts for over

half of this 12 percent. In Appendix A.1, we provide further discussions regarding the

differences between the two long run risks model specifications.

Learning Full Info. Difference

R2 p-value R2 p-value R2 p-value

0.226 0.003 0.118 0.037 0.102 0.033

Table 12: Predictive Performance under Learning and Full Information (Alternative
Specification). This table reports the out-of-sample incremental R-squared, defined in (30), for
predicting stock index returns over the next year between using our long run risks model implied expected
returns, assuming investors either learn about dividend model parameters or have full information, and
the corresponding p-value from the adjusted-MSPE statistic of Clark and West (2007). Statistis are based
on ata between 1976 and 2013.

4 Conclusion

In this paper, we develop a time series model for stock index dividend growth rates

that combines the insights from van Binsbergen and Koijen (2010) and Campbell and

Shiller (1988b). We show that the model performs well in capturing the variation in

dividend growth rates. We find that some parameters in our dividend model are difficult
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to estimate with precision in finite sample. As a consequence, learning about dividend

model parameters significantly changes investors beliefs about future dividends and the

nature of the long run risks in the economy.

We show how to evaluate the economic and statistical significance of learning about

parameters in the dividend process in determining asset prices and returns. We argue

that a better asset pricing model should forecast returns better. We find that a long run

risks model that incorporates learning about dividend dynamics is surprisingly successful

in forecasting stock index returns. While the long run risks model, assuming learning,

explains 22.9 percent of the variation in annual stock index returns, shutting down learning

reduces the R-square value to 10.4 percent. This drop in R-square value is statistically

significant.

These results also highlight the importance of investors aversion to long run risks for

understanding asset prices.
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A Appendix

A.1 Additional Evidence of Robustness

A.1.1 Timing of Investors Receiving Earnings Information

Throughout this paper, we assume that investors receive earnings information 3 months

after fiscal quarter or year end. To show that our findings are robust to this assumption, we

repeat results in this paper, assuming that investors instead receive earnings information

6, 9, or 12 months after fiscal quarter or year end. We report these results in Tables

13. We note that changing this assumption can affect our results through its effect on

long run dividend growth expectations and investors’ beliefs about the persistence ω of

dividend growth rates, both computed using dividend model parameters estimated at each

point in time based on data available at the time. Nevertheless, results show that the

significance of our findings that investors’ learning about dividend dynamics is reflected

in the returns of the stock index is robust to changes in this assumption on when investors

receive earnings information.

3 Months Lag 6 Months Lag 9 Months Lag 12 Months Lag

syt 3.964∗∗∗ 3.771∗∗∗ 3.603∗∗∗ 3.554∗∗∗

(Learning) (1.133) (1.114) (1.110) (1.103)

R2 0.152 0.145 0.138 0.137

Table 13: Stock Index Returns and Stock Yields (Timing of Investors Receiving Earnings
Information): This table reports coefficient estimates and R-square value from regressing stock index
returns over the next year on stock yields, computed assuming investors learn about dividend dynamics
using our dividend model. Regression is based on data between 1976 and 2013. Dividend model
parameters are estimated based on data since 1946. To estimate dividend dynamics, we assume that
investors receive earnings information 3, 6, 9, or 12 months after fiscal quarter or year end. Newey and
West (1987) standard errors are reported in parentice. Estimates significant at 90, 95, and 99 percent
confidence levels are highlighted using ∗, ∗∗, and ∗ ∗ ∗.

A.1.2 Estimating Dividend Dynamics using a Rolling Window of Dividend

Data

We show that estimating dividend model parameters based on an expanding window of

past dividend data performs better than estimating those parameters based on a rolling
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window of past data, for the purposes of forecasting both future dividends and stock index

returns. We note that expanding window refers to estimating model parameters based on

all past data since 1946, and rolling window refers to estimating those parameters based

on only the last h years of past data. We set h to 10, 20, or 30 years. In Table ??,

we report the out-of-sample R2 value for predicting annual dividend rates using expected

dividend growth rates implied by our model, with model parameters estimated using a

rolling window of h years of past data. Results confirm that the out-of-sample R-square

value for predicting dividend growth rates is highest when model parameters are estimated

based on an expanding window of past data. In absolute terms, however, the out-of-sample

R-square value is still 27.0 (28.6) percent when parameters are estimated based on a rolling

window of 20 (30) years of past data. This shows that our model’s success in forecasting

dividend growth rates is robust to how we set the training period.

10 Years 20 Years 30 Years

R2 0.083 0.270 0.286
[0.085] [0.001] [0.001]

Table 14: Dividend Growth Rates and Expected Growth Rates (Rolling Window): This table
reports the out-of-sample R-square value for predicting dividend growth rates using our dividend model.
Also reported in square parentice is the corresponding p-value from the adjusted-MSPE statistics of Clark
and West (2007). Statistics are based on data between 1975 and 2013. Dividend model parameters are
estimated based on a rolling window of past 10, 20, or 30 years of data.

Second, we note that, according to both specifications of our long run risk model,

expected returns during the Dot-Com crash are negative. We recall that, in our long run

risk model, expected return is a linear function of state variables. For example, under the

second specification, expected return can be written as:

Et [rt+1] = Ar,0 + Ar,1xt + Ar,2λt. (39)

where coefficients Ar,· are always positive. So in states of the world where state variables

xt and λt are significantly negative, expected returns can be negative. However, our model

does not shed any light on the deeper economic intuition behind why we estimate negative

expected returns during the Dot-Com crash.
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A.1.3 Two Long Run Risks Models

We decompose expected returns derived from each of the two specifications of our long

run risk model into model implied risk free rate and model implied risk premium.18 In

Figure 8, we plot risk free rate and risk premium derived from the two specifications of

our long run risk model, as well as the actual risk free rate and risk premium over the

next year, for the period between 1976 and 2013. Interestingly, Figure 7 shows that the

two specifications have completely different implications on the decomposition of expected

returns into risk free rate and risk premium. That is, according to the first specification

of consumption dynamics, almost all of the variation in expected returns is attributable

to the variation in the risk free rate, whereas the risk premium hardly changes over time.

To the contrary, according to the second specification of consumption dynamics, almost

all of the variation in expected returns is attributable to the variation in risk premium,

whereas the risk free rate hardly changes over time.

Risk Free Rate Risk Premium

Figure 8: Model Implied Risk Free Rate and Risk Premium. This figure plots risk free rate and
risk premium derived from the two specifications of our long run risk model, as well as the actual risk
free rate and excess returns over the next year, for the period between 1975 and 2013. Dividend model
parameters are estimated based on data since 1946.

Clearly, we know from the data that the risk free rate is relatively constant over time.

Thus, we can infer that, of the two specifications, the second specification of consumption

dynamics is the more realistic one. In other words, because different models of the

18We derive the risk free rate as a function of state variables and preference, consumption and dividend
model parameters in the Appendix.
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consumption process can have different implications for the decomposition of expected

returns into risk premium and risk free rate, we can use this decomposition to shed light

on consumption dynamics. However, modeling consumption is not the focus of this paper,

so we leave this to potential future research.

A.2 Kalman Filter

We describe the Kalman filtering process for estimating the system of equations in (6).

First, note the last equation in (6) can be estimated separately from other equations in

(6) using time series regression. To estimate the first two equations, define x′t = xt−1 and

ε′x,t+1 = εx,t, and re-write the remaining system of equations as:

∆dt+1 = µd + x′t+1 + φ(∆et+1 − µd) + ϕ
(
qt − µq

)
+ σdεd,t+1

x′t+1 = ρx′t + σxε
′
x,t+1(

εd,t+1

ε′x,t+1

)
∼ i.i.d. N

(
0,

(
1 0

0 1

))
. (40)

To apply the Kalman filter, let x′t|s denote the time-s expectation of the latent variable

x′t and P ′t|s denote the variance of x′t conditioning on information in time-s. Set initial

conditions x′0|0 = 0 and P ′0|0 = σ2
x

1−ρ2 . We can then iterate the following system of equations:

x′t+1|t = ρx′t|t, P ′t+1|t = ρ2P ′t|t + σ2
x,

et+1 = ∆dt+1 − µd − φ(∆et+1 − µd)− ϕ
(
qt − µq

)
,

x′t+1|t+1 = x′t+1|t +
P ′t+1|t

P ′t+1|t + σ2
d

et+1, P ′t+1|t+1 = P ′t+1|t −
P 2
t+1|t

Pt+1|t + σ2
d

. (41)

To estimate dividend model parameters using data up to time-τ , define the log likelihood

function:

L = −
τ−1∑
t=0

(
log
(
P ′t+1|t + σ2

d

)
+

e2
t+1

P ′t+1|t + σ2
d

)
,

We note in our implementation of Kalman filter that, because we use overlapping

monthly data, we obtain twelve log likelihoods, one for the 12 month periods that begin

in January, one for the 12 month periods that begin in February, etc. We choose model

parameters by maximizing the average of the twelve log likelihood.
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A.3 Bootstrap Simulation

Simulation is based on 100,000 iterations. First we simulate innovations to dividend

growth rates and earnings-to-dividend ratios:εd,t+1

εx,t+1

εq,t+1

 ∼ i.i.d. N

0,

 1 λdx λdq

λdx 1 λxq

λdq λxq 1


 . (42)

Dividend model parameters used for simulations are those reported in Table 2, which are

estimated based on the full data sample between 1946 and 2013. From these innovations, we

can simulate the latent variable xt and earnings-to-dividend ratios iteratively as:

xt+1 = ρxt + σxεx,t+1

qt+1 = µq + θ
(
qt − µq

)
+ σqεq,t+1. (43)

Given the simulated time series of xt and earnings-to-dividend ratios, we can simulate

dividend and earnings growth rates iteratively as:

∆dt+1 = µd +
1

1− φ
(
xt + φ(∆qt+1 − µq) + (ϕ− φ)

(
qt − µq

)
+ φσqεq,t+1 + σdεd,t+1

)
∆et+1 = qt+1 − qt + ∆dt+1. (44)

A.4 Proof for Proposition 1

Let M0 be the true asset pricing model and let Mi and Mj be two candidate models.

Define εt+1 = rt+1 − Et[rt+1|M0]. We can write:

var(Et[rt+1|M0]− Et[rt+1|Mi])

= var(rt+1 − Et[rt+1|Mi]) + var(εt+1)− 2 · cov(rt+1 − Et[rt+1|Mi], εt+1)

= var(rt+1 − Et[rt+1|Mi]) + var(εt+1) + 2 · cov(Et[rt+1|Mi], εt+1)− 2 · cov(rt+1, εt+1)

= var(rt+1 − Et[rt+1|Mi]) + var(εt+1)− 2 · cov(rt+1, εt+1) .

Last equality assumes frictionless and efficient market and investors having rational expec-

tations. As a result, marginal investor’s investment decisions are based on all information

available and so εt+1 is orthogonal to any variable that is time-t measurable. var(εt+1)
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and cov(rt+1, εt+1) are independent of the candidate model i and so:

var(Et[rt+1|M0]− Et[rt+1|Mi]) < var(Et[rt+1|M0]− Et[rt+1|Mj ])

⇔ var(rt+1 − Et[rt+1|Mi]) < var(rt+1 − Et[rt+1|Mj ])

⇔ 1− var(rt+1 − Et[rt+1|Mi])

var(rt+1)
> 1− var(rt+1 − Et[rt+1|Mj ])

var(rt+1)
.

A.5 Derivation of Price-Dividend Ratios and Expected Returns

A.5.1 The First Long Run Risks Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (6), consumption dynamics in (24), and

investors preferences in (22). Our derivation closely follows the steps in Bansal and Yaron

(2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (45)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (46)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt +Ac,2σ
2
t . (47)

Let µc = µd − µπ. We can write:

Et [mt+1 + s̃t+1] =ζ log(δ) +

(
ζ − ζ

ψ

)
(µc + γxt) + ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)xt

+ ζ (g1%− 1)Ac,2σ
2
t + ζg1 (1− %)Ac,2σ

2
c ,
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vart (mt+1 + s̃t+1) = ζ2

(
1− 1

ψ

)2

σ2
t + ζ2 (g1Ac,1σx)2 + ζ2 (g1Ac,2σς)

2 . (48)

Using the condition Et[exp(mt+1 + s̃t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and

Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )(µd − µπ) + g0 + g1Ac,2(1− %)σ2
c + 1

2ζg
2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
γ

1− g1ρ
, Ac,2 =

ζ(1− 1
ψ )2

2(1− g1%)
. (49)

Next, let zd,t be log price-to-dividend ratio of the stock index, rt+1 be log return of the

stock index and r̃t+1 be log real return. Then, by first order Taylor series approximation,

we can write:

rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1,

r̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (50)

where ∆d̃t+1 is real dividend growth rate. Assume that log price-to-dividend ratio is of

the form:

zd,t = Ad,0 +Ad,1xt +Ad,2σ
2
t +Ad,3(qt − µq). (51)

Then note that:

Et [mt+1 + r̃t+1] =ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt + (ζ − 1) (g1%− 1)Ac,2σ
2
t

+ g1 (1− %)Ad,2σ
2
c +

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)A0

+ (κ1ρ− 1)Ad,1xt + (κ1%− 1)Ad,2σ
2
t + κ1(1− %)Ad,2σ

2
c

+ (κ1θ − 1)Ad,3
(
qt − µq

)
+ µc +

1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
.

vart (mt+1 + r̃t+1) =

(
ζ − 1− ζ

ψ

)2

σ2
t +

(
1

1− φ

)2

σ2
d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2

x

+ ((ζ − 1)g1Ac,2 + κ1Ad,2)2 σ2
ς +

(
κ1Ad,3 +

φ

1− φ

)2

σ2
q

+ 2 ((ζ − 1)g1Ac,1 + κ1Ad,1)

(
κ1Ad,3 +

φ

1− φ

)
λxqσxσq

+
2

1− φ

(
κ1Ad,3 +

φ

1− φ

)
λdqσdσq +

2

1− φ
((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx.

(52)
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Using the condition Et[exp(mt+1 + r̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and Ad,3

as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)Ac,0(g1 − 1) + ((ζ − 1)g1Ac,2 + κ1Ad,2)(1− %)σ2
c

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2( 1
1−φ)2σ2

d + 1
2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2

x

+1
2((ζ − 1)g1Ac,2 + κ1Ad,2)2σ2

ς + 1
2(κ1Ad,3 + φ

1−φ)2σ2
q

+ ((ζ − 1)g1Ac,1 + κ1Ad,1)
(
κ1Ad,3 + φ

1−φ

)
λxqσxσq

+ 1
1−φ

(
κ1Ad,3 + φ

1−φ

)
λdqσdσq + 1

1−φ ((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
γ + (ζ − 1)Ac,1(g1ρ− 1) + 1

1−φ

1− κ1ρ
,

Ad,2 =
(ζ − 1)(g1%− 1)Ac,2 + 1

2

(
ζ − 1− ζ

ψ

)2

1− κ1%
, Ad,3 =

ψ − (1− θ)φ
(1− κ1θ)(1− φ)

. (53)

Substituting the expression for zd,t into rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1 leads:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2σ
2
t +Ar,3(qt − µq), (54)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd + κ1(1− %)Ad,2σ
2
c , Ar,1 =

1

1− φ
− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1%)Ad,2, Ar,3 =
ϕ− (1− θ)φ

1− φ
− (1− κ1θ)Ad,3 = 0. (55)

Expected return over the next τ period is:

τ−1∑
s=0

rt+s+1 = sAr,0 +

(
τ−1∑
s=1

Ar,1ρ
s

)
xt +

(
τ−1∑
s=1

Ar,2%
s

)
σ2
t +

(
τ−1∑
s=1

Ar,2(1− %s)

)
σ2
c . (56)

Finally, the risk free rate can be written as:

rf,t+1 = Af,0 + Af,1xt + Af,2σ
2
t , (57)

44



where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1)(g0 + (g1 − 1)C0 + g1(1− %)C2σ

2
c

− 1

2
((ζ − 1)g1C1)2 σ2

x −
1

2
((ζ − 1)g1C2σς)

2 .

Af,1 = −(ζ − 1− ζ

ψ
)γ + (ζ − 1)(1− g1ρ)C1, Af,2 = (ζ − 1)(1− g1%)C2 −

1

2
(ζ − 1− ζ

ψ
)2. (58)

A.5.2 The Alternative Long Run Risks Model

We derive price-to-dividend ratios and expected returns implied by our long-run risk

model, which features dividend dynamics in (6), consumption dynamics in (33), and

investors preferences in (22). Our derivation closely follows the steps in Bansal and Yaron

(2004). The log stochastic discount factor is given as:

mt+1 = ζ log(δ)− ζ

ψ
∆c̃t+1 + (ζ − 1)s̃t+1. (59)

Let zc,t be the log wealth-to-consumption ratio, by first order Taylor series approximation,

log real return of the representative agent’s wealth portfolio can be written as:

s̃t+1 = g0 + g1zc,t+1 − zc,t + ∆c̃t+1. (60)

The log-linearizing constants are:

g0 = log(1 + exp(z̄c))− g1(z̄c) and g1 =
exp(z̄c)

1 + exp(z̄c)
.

Assume that log wealth-to-consumption ratio is of the form:

zc,t = Ac,0 +Ac,1xt. (61)

Let µc = µd − µπ. We can write:

Et [mt+1 + s̃t+1] =ζ log(δ) +

(
ζ − ζ

ψ

)
(µc + γxt) + ζg0 + ζ (g1 − 1)Ac,0 + ζ (g1ρ− 1)xt,

vart (mt+1 + s̃t+1) = ζ2

(
1− 1

ψ

)2

σ2
c + ζ2 (g1Ac,1σx)2 . (62)
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Using Et[exp(mt+1 + s̃t+1)] = 1, we can solve for coefficients Ac,0, Ac,1, and Ac,2 as:

Ac,0 =
log(δ) + (1− 1

ψ )µc + g0 + 1
2ζ(1− 1

ψ )2σ2
c + 1

2ζg
2
1(A2

c,1σ
2
x +A2

c,2σ
2
ς )

1− g1
,

Ac,1 =

(
1− 1

ψ

)
γ

1− g1ρ
. (63)

Next, let zd,t be log price-to-dividend ratio of the stock index, rt+1 be log return of the

stock index and r̃t+1 be log real return. Then, by first order Taylor series approximation,

we can write:

rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1,

r̃t+1 = κ0 + κ1zd,t+1 − zd,t + ∆d̃t+1. (64)

where ∆d̃t+1 is real dividend growth rate. Assume that log price-to-dividend ratio is of

the form:

zd,t = Ad,0 +Ad,1xt +Ad,2λt +Ad,3(qt − µq). (65)

Then note that:

Et [mt+1 + r̃t+1] =ζ log(δ) + (ζ − 1) (g1 − 1)Ac,0 + (ζ − 1) (g1ρ− 1)Ac,1xt + µc

+

(
ζ − ζ

ψ
− 1

)
(µc + γxt) + (ζ − 1) g0 + κ0 + (κ1 − 1)A0 + (κ1ρ− 1)Ad,1xt

+ (κ1%− 1)Ad,2λt + (κ1θ − 1)Ad,3
(
qt − µq

)
+

1

1− φ
xt +

ϕ− (1− θ)φ
1− φ

(
qt − µq

)
.

vart (mt+1 + r̃t+1) =

(
ζ − 1− ζ

ψ

)2

σ2
c +

(
1

1− φ

)2

σ2
d + ((ζ − 1)g1Ac,1 + κ1Ad,1)2 σ2

x

+ (κ1A2)2 σ2
ς +

(
κ1Ad,3 +

φ

1− φ

)2

σ2
q + 2

(
κ1Ad,3 +

φ

1− φ

)(
ζ − 1− ζ

ψ

)
σxσqλt

+ 2 ((ζ − 1)g1Ac,1 + κ1Ad,1)

(
κ1Ad,3 +

φ

1− φ

)
λxqσxσq

+
2

1− φ

(
κ1Ad,3 +

φ

1− φ

)
λdqσdσq +

2

1− φ
((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx.

(66)
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Using Et[exp(mt+1 + r̃t+1)] = 1, we can solve for Ad,0, Ad,1, Ad,2, and Ad,3 as:

Ad,0 =



ζ log(δ) + (ζ − 1)g0 + (ζ − 1)Ac,0(g1 − 1)

+
(
ζ − ζ

ψ − 1
)
µc + κ0 + µc + 1

2( 1
1−φ)2σ2

d + 1
2((ζ − 1)g1Ac,1 + κ1Ad,1)2σ2

x

+1
2(κ1Ad,2)2σ2

λ + 1
2(κ1Ad,3 + φ

1−φ)2σ2
q

+ ((ζ − 1)g1Ac,1 + κ1Ad,1)
(
κ1Ad,3 + φ

1−φ

)
λxqσxσq

+ 1
1−φ

(
κ1Ad,3 + φ

1−φ

)
λdqσdσq + 1

1−φ ((ζ − 1)g1Ac,1 + κ1Ad,1)λdxσdσx


1− κ1

,

Ad,1 =

(
ζ − 1− ζ

ψ

)
γ + (ζ − 1)Ac,1(g1ρ− 1) + 1

1−φ

1− κ1ρ
,

Ad,2 =

1
1−φ

(
ζ − 1− ζ

ψ

)
σcσd

1− κ1%
, Ad,3 =

ψ − (1− θ)φ
(1− κ1θ)(1− φ)

. (67)

Substituting the expression for zd,t into rt+1 = κ0 + κ1zd,t+1 − zd,t + ∆dt+1 leads:

Et[rt+1] = Ar,0 +Ar,1xt +Ar,2λt +Ar,3(qt − µq), (68)

where:

Ar,0 = κ0 − (1− κ1)Ad,0 + µd, Ar,1 =
1

1− φ
− (1− κ1ρ)Ad,1,

Ar,2 = −(1− κ1%)Ad,2, Ar,3 =
ϕ− (1− θ)φ

1− φ
− (1− κ1θ)Ad,3 = 0. (69)

Expected return over the next τ period is:

τ−1∑
s=0

rt+s+1 = sAr,0 +

(
τ−1∑
s=1

Ar,1ρ
s

)
xt +

(
τ−1∑
s=1

Ar,2%
s

)
λt +

(
τ−1∑
s=1

Ar,2(1− %s)

)
µλ. (70)

Finally, the risk free rate can be written as:

rf,t+1 = Af,0 + Af,1xt, (71)

where:

Af,0 = −ζ log(δ)− (ζ − 1− ζ

ψ
)µc − (ζ − 1)(g0 + (g1 − 1)C0 −

1

2

(
ζ − 1− ζ

ψ

)2

σ2
c −

1

2
((ζ − 1)g1C1)2 σ2

x.

Af,1 = −(ζ − 1− ζ

ψ
)γ + (ζ − 1)(1− g1ρ)C1. (72)
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